Two-stage Blind Deconvolution

نویسندگان

  • Md. Mafijul Islam
  • Mauricio D. Sacchi
چکیده

In seismic data processing, deconvolution plays a very important role because it permits to increase the temporal resolution of seismic sections and to equalize sources. The deconvolution problem when the wavelet is known is an ill-posed problem that can be tackled via regularization methods. However, the seismic source wavelet is unknown and therefore, it must be estimated from the data prior to deconvolution. In this paper, we examine an algorithm to simultaneously estimate the reflectivity and the wavelet. The method assumes that the underlying seismic reflectivity is a sparse series and that a common seismic wavelet exists for a large number of seismograms with different reflectivity sequences. The method reduces to the alternating minimization of a cost function to promote sparsity in the reflectivity and smoothness in the wavelet.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Super-exponential methods for multichannel blind deconvolution

Multichannel blind deconvolution has received increasing attention during the last decade. Recently, Martone [3, 4] extended the super-exponential method proposed by Shalvi and Weinstein [1, 2] for single-channel blind deconvolution to multichannel blind deconvolution. However, the Martone extension suffers from two type of serious drawbacks. The objective of this paper is to obviate these draw...

متن کامل

Sparse Representation and Blind Deconvolution of Dynamical Systems

In this paper, we discuss blind deconvolution of dynamical systems, described by the state space model. First we formulate blind deconvolution problem in the framework of the state space model. The blind deconvolution is fulfilled in two stages: internal representation and signal separation. We employ two different learning strategies for training the parameters in the two stages. A sparse repr...

متن کامل

Blind Signal Deconvolution by Spatio Temporal Decorrelation and Demixing

In this paper we present a simple efficient local unsupervised learning algorithm for on-line adaptive multichannel blind deconvolution and separation of i.i.d. sources. Under mild conditions, there exits a stable inverse system so that the source signals can be exactly recovered from their convolutive mixtures. Based on the existence of the inverse filter, we construct a two-stage neural netwo...

متن کامل

Blind separation and deconvolution for convolutive mixture of speech using SIMO-model-based ICA and multichannel inverse filtering

We propose a new two-stage blind separation and deconvolution (BSD) algorithm for a convolutive mixture of speech, in which a new Single-Input Multiple-Output (SIMO)-modelbased ICA (SIMO-ICA) and blind multichannel inverse filtering are combined. SIMO-ICA can separate the mixed signals, not into monaural source signals but into SIMO-model-based signals from independent sources as they are at th...

متن کامل

Two-stage Approach for Multichannel Blind Deconvolution

Multichannel blind deconvolution is a method that allows the separation of sources from which only convolutive mixtures are observable. It is an attractive technique for separating independent speech and noise signals. Fast tracking is essential in order to cope with real nonstationary environments. Based on the principle of information maximization, a new two-stage algorithm is proposed which ...

متن کامل

PSO-Optimized Blind Image Deconvolution for Improved Detectability in Poor Visual Conditions

Abstract: Image restoration is a critical step in many vision applications. Due to the poor quality of Passive Millimeter Wave (PMMW) images, especially in marine and underwater environment, developing strong algorithms for the restoration of these images is of primary importance. In addition, little information about image degradation process, which is referred to as Point Spread Function (PSF...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013